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The scattering of an incident acoustic wave by a non-uniform mean flow resulting
from a heat source is investigated. The heat source produces gradients in the mean
flow and the speed of sound that scatter the incident duct acoustic mode into
vortical, entropic, and higher-order acoustic modes. Linear solutions utilizing the
compact source limit and nonlinear solutions to the Euler equations are computed to
understand how variations in the amplitude and axial extent of the heat source as well
as the incident acoustic wave propagation angle and amplitude modify the scattered
solution. For plane wave excitation, significant entropy waves are produced as the net
heat addition increases at the expense of the transmitted acoustic energy. When the net
heat addition is held constant, increasing the axial extent of the heat source results
in a reduction of the entropy waves produced downstream and a corresponding
increase in the downstream scattered acoustic energy. For circumferential acoustic
mode excitations the incident acoustic wave angle, characterized by the cutoff ratio,
significantly modifies the scattered acoustic energy. As the propagating mode cutoff
ratio approaches unity, a rise in the scattered vortical disturbance and a decrease
in the entropic disturbance amplitude is observed. As the cutoff ratio increases, the
scattered solution approaches the plane wave results. Moreover, incident acoustic
waves with different frequencies and circumferential mode orders but similar cutoff
ratios yield similar scattered wave coefficients. Finally, for large amplitude incident
acoustic waves the scattered solution is modified by nonlinear effects. The pressure
field exhibits nonlinear steepening of the wavefront and the nonlinear interactions
produce higher harmonic frequency content which distorts the sinusoidal variation of
the outgoing scattered acoustic waves.

1. Introduction
In combustors, heat addition generates mean flow gradients which modify the

mean flow downstream of the flame zone. Unsteady fluctuations in heat release are
produced by velocity perturbations near the flame surface that excite duct acoustic
eigenmodes producing noise. When the net gain in acoustic energy from the interaction
between the flame and the acoustic duct modes exceeds the energy expelled from the
combustion chamber, combustion instability results (Rayleigh 1896). This has led
to interest in determining (i) the reflection and transmission of acoustic waves in
heated flows and nozzles (Marble & Candel 1977; Stow, Dowling & Hynes 2002) and
(ii) computing the local acoustic velocity fluctuations near the flame surface (Dowling
1997). In this paper, we examine these two issues by studying the scattering of
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circumferential acoustic waves by a heat source into upstream propagating acoustic
waves and downstream propagating vortical, entropic and acoustic waves.

Early studies on the reflection and transmission of acoustic waves in a nozzle
utilized the compact nozzle limit (Tsien 1952; Bohn 1977; Marble & Candel 1977;
Mani 1981), where the wavelength of the acoustic waves is large relative to the
radius of the nozzle. In this limit, only plane waves propagate and the mean flow can
be treated as uniform upstream and downstream of a zone of rapid variation. The
upstream and downstream solutions can then be related by the Rankine–Hugoniot
jump conditions applied at the interface between the two regions. They derived
analytical expressions for the reflection and transmission coefficients which depend
upon the change in Mach number upstream and downstream of the nozzle throat.

Many combustors are annular in geometry and produce a superposition of
circumferentially varying acoustic modes which can be characterized as spinning
or standing wave modes (Evesque & Polifke 2002; Evesque, Polifke & Pankiewitz
2003). The transmission and reflection of these modes in annular nozzles can be
significantly different from plane waves. Stow et al. (2002) extended the plane wave
results to consider the scattering of circumferentially-varying modes in the narrow
annulus limit for a choked nozzle. They found that besides reflection and transmission
of the incident acoustic wave at the throat, scattering of energy into a vorticity and an
entropy wave occurred. Subsequent work has analysed the reflection and transmission
of one-dimensional flow disturbances over a wider range of frequencies and the impact
of shocks on the solutions (Moase, Brear & Manzie (2007); Lamarque & Poinsot
2008).

The effect of non-uniform mean flow and density gradients due to heat addition
(Dowling 1995) also has a significant effect on the propagation and scattering of
flow disturbances. Density gradients modify the speed of sound and the acoustic duct
eigenmodes (Sujith, Waldherr & Zinn 1995; Kim & Williams 1998; Subrahmanyam,
Sujith & Lieuwen 2001; Roux et al. 2005). Vortical and entropic waves also propagate
and their stability can be modified by both the velocity and density gradients leading
to large amplitude disturbances and nonlinear steepening (Tyagi & Sujith 2003; Atassi
2007). Karimi, Brear & Moase (2008) considered a one-dimensional heated flow with
acoustic and entropic forcing. They found that low-frequency acoustic and entropic
excitations generated significant entropic disturbances downstream of the heat source
while high-frequency excitations generate little entropy and most of the incident wave
energy goes into reflected and transmitted acoustic waves.

The objective of this paper is to examine how in annular geometries acoustic
energy is scattered by a heat source into entropic, vortical and acoustic disturbances.
To isolate the effect of the heat addition, we first contrast the scattering by a heat
source with that in an adiabatic converging nozzle that produces the same rise in
Mach number. We then consider (i) the effect of the heat source amplitude and width
on the scattering of incident plane and circumferential acoustic modes, (ii) the effect
of the cutoff ratio of the incident acoustic wave on the scattered modes and (iii) the
amplitude of the incident acoustic wave on the scattered modes. In § 2, we formulate
the scattering of incident acoustic waves in an annular duct governed by the Euler
equations with a heat source. We first consider the general problem and then the
compact source limit where the modes upstream and downstream of the heat source
are matched using the Rankine–Hugoniot jump conditions. In § 3, numerical results
are presented for the scattering of both plane and circumferential acoustic waves.
The numerical cases examine (i) the range of validity of the compact source limit by
considering heat source distributions with various widths and acoustic wave excitation
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Figure 1. Conceptual sketch of annular duct geometry and location of heat source, Q.

at different frequencies and amplitudes and (ii) how well the scattered disturbances
of the circumferential modes can be characterized by the cutoff ratio of the incident
acoustic mode. Finally, § 4 presents the conclusions of the paper.

2. Mathematical formulation
In this section, we formulate the scattering of an incident acoustic wave by mean

flow gradients produced from a heat source. Figure 1 shows a conceptual sketch of the
model consisting of a heat source in an annular duct characterized by an inner radius,
rh, and outer radius, rt . We first present the nonlinear scattering formulation, in § 2.1,
where the Euler equations are solved numerically, subject to an imposed incident
acoustic wave and a Gaussian heat source, and a local linearization is applied at the
nonreflecting inflow/outflow boundary conditions. A simplified linear model which
assumes small-amplitude disturbances and examines the low frequency limit is also
presented in § 2.2.

2.1. Nonlinear formulation: sound scattering from a Gaussian heat source

We model the problem as an inviscid non-heat conducting flow governed by the Euler
equations. The conservation equations in the volume, Ω , bounded by the surface, ∂Ω ,
are expressed as

∂

∂t

∫
Ω

W i dΩ +

∫
∂Ω

FC
ijnj dΓ = Si, (2.1)

where nj is the unit normal of the surface ∂Ω , the vector, W i , and tensor, FC
ij , are

the conservation variables and convective fluxes for mass, momentum and energy,
respectively, and the source term, Si , contains a heat source, Q̃(x), in the energy
equation. These quantities are given explicitly in Cartesian coordinates as

W i = [ρ ρu ρv ρw E]T

Fij = [ρuj pδ1j + ρuuj pδ2j + ρvuj pδ3j + ρwuj (E + p)uj ]
T

Si = [0 0 0 0 Q̃(x, t)]T

⎫⎪⎬
⎪⎭ (2.2)

where ρ is the density, uj = [u v w]T are the Cartesian coordinates of the velocity field,
Fij is the j th column of the (5×3) tensor FC

ij , p is the pressure and E = ρ(cvT +1/2|u|2)
is the total internal energy with temperature, T , and specific heat at constant volume,
cv . In general, the imposed compact source can be decomposed into steady and
unsteady terms, Q̃(x, t) =Q(x) + q ′(x, t). In this paper, the imposed compact, steady
heat source is Gaussian, Q(x) = A exp(−x2/σ 2), and is characterized by its amplitude,
A and its axial extent, σ . The geometry is an annular duct with outer radius, r = rt

and inner radius, r = rh. At the surface of the duct, r = rh, rt , and at any solid bodies
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which lie in the computational domain, the impermeability condition,∫
∂Ω

ujnj dΓ = 0, (2.3)

is applied. In what follows, we non-dimensionalize all lengths by the outer radius of
the duct, rt , the velocity by the inlet speed of sound, c1, and the density by the inlet
mean density, ρ1.

2.1.1. Inflow/outflow boundary conditions

At the inflow boundary, an incident acoustic wave, which is a solution to the
linearized Euler equations, is imposed. Non-reflecting boundary conditions are then
imposed on the scattered solution resulting from the interaction of the incident wave
with the mean flow gradients. We assume that the inflow/outflow boundaries are
located sufficiently far from the source region where nonlinear effects and vorticity are
small such that the flow is approximated by the linearized Euler equations perturbed
about a uniform mean flow. In this propagation region, Ωp , the flow variables are
locally decomposed into a sum between their steady mean values and their unsteady
disturbances,

v = U + u(x, t), x ∈ Ωp,

p = P + p′(x, t),

ρ = ρ + ρ ′(x, t),

⎫⎬
⎭ (2.4)

where U = [M 0 0] is the mean velocity field, M is the mean axial Mach number,
P is the dimensionless mean pressure, ρ is the dimensionless mean density and
u, p′(x, t), ρ ′(x, t) are the unsteady velocity, pressure and density, respectively.
The unsteady quantities are assumed small such that {|u|, |p′|, |ρ ′|} � {Mx, P, ρ}.
The pressure field can be represented in terms of annular duct eigenfunction
expansions

p′(x, r, θ, t) =

n=∞∑
n=1

m=∞∑
m=−∞

pmn(x, t)eimθRmn(r), (2.5)

where the Fourier–Bessel coefficient, pmn , is given by

pmn(x, t) =
1

2πΛmn

∫ 1

rh

∫ 2π

0

rR̄mn(r)e
−imθp′(x, r, θ, t) dθ dr, (2.6)

where

Λmn =

∫ 1

rh

r |Rmn |2 dr.

The orthogonal eigenfunctions, Rmn(r), are a combination of Hankel functions
(Courant & Hilbert 1937),

Rmn(r) = H (1)
m (λmnr) − dH (1)

m (λmnrh)/dr

dH
(2)
m (λmnrh)/dr

H (2)
m (λmnr), (2.7)

where λmn is the eigenvalue associated with the radial eigenfunction, Rmn , and the
overbar in (2.6) denotes the complex conjugate. The eigenvalue at the boundary is
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determined by the impermeability condition at the hub and tip of the annulus,

H ′(1)

m (λmnrh) H ′(2)

m (λmnrh)
= 0.

H ′(1)

m (λmn) H ′(2)

m (λmn)

(2.8)

Thus, the normal mode vector of an incident acoustic disturbance is

Y i = A(r)ei(mθ+k+
mnx−ω̃t), (2.9)

where Y i =[p′ ux uθ ur ρ ′]T. The circumferential wavenumber m, radial mode order
n and reduced frequency ω̃ =Ωrt/c are inputs. In what follows, we drop the tildes
for convenience. The axial wavenumber is given by

k±
mn =

ω

⎛
⎝−M ±

√
1 −

(
βλmn

ω

)2

⎞
⎠

β2
, (2.10)

where + (−) indicates modes propagating with a group velocity downstream

(upstream) and β =
√

1 − M2 is the Prandtl–Glauert factor. The parameter in the
square root, ω/(λmnβ), is the cutoff ratio. When it is greater than one, acoustic waves
propagate in the duct carrying acoustic energy. When it is less than one, evanescent
disturbances decay in the duct. The amplitude vector is

AT = ai,aRmn

⎡
⎢⎣1,

1

(ω/k+
mn − M)

,
m/r

k+
mn[(ω/k+

mn − M)]
,

−i
d ln (Rmn)

dr
k+

mn(ω/k+
mn − M)

, 1

⎤
⎥⎦ (2.11)

with ai,a as a constant factor. Note that the non-dimensional speed of sound and
density at the inlet is unity. The phase velocity, ω/kmn , depends on the Mach number
and the cutoff ratio. Thus the relationship between the pressure and the axial velocity
depends on the Mach number and the cutoff ratio. The circumferential velocity has
an additional dependence on m/kmn .

To complete the initial-boundary-value problem, inflow/outflow conditions must
be specified. In order to focus on the scattering results from the mean heat source, we
impose non-reflecting boundary conditions at the boundaries. These non-reflecting
boundary conditions have been derived in Atassi & Galan (2008) and the results are
briefly presented here. The pressure at the inflow and outflow boundaries, respectively,
is given by the relations

L−
NRp′ =

∂p′

∂t
− (1 − M)

∂p′

∂x
+ (1 − M)

∑
m

∑
n

λmn

β
Rmn(r)e

imθ

∫ t

0

(
β2 ∂pmn

∂x
− M

∂pmn

∂t ′

)
J1[(λmnβ(t − t ′)] dt ′ =

2

1 + M

∂p′
i

∂t
, (2.12)

L+
NRp′ =

∂p′

∂t
+ (1 + M)

∂p′

∂x
+ (1 + M)

∑
m

∑
n

λmn

β
Rmn(r)e

imθ

∫ t

0

(
β2 ∂pmn

∂x
− M

∂pmn

∂t ′

)
J1[(λmnβ(t − t ′)] dt ′ = 0, (2.13)
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where the subscript i on the right-hand side of (2.12) denotes the incident pressure
wave. The axial velocity at the inflow boundary can be expressed in terms of the
pressure via the relation,

p′ + ux = (1 − M)
∑

m

∑
n

λmn

β
Rmn(r)e

imθ

∫ t

0

{(uxmn
(t ′) + Mpmn)J1[λmnβ(t − t ′)]} dt ′ + p′

i + uxi
. (2.14)

Note that the convolution integrals arise because the frequencies of the scattered
waves are not generally known a priori because of nonlinear interactions. However, in
the case where the unsteady fluctuations are assumed small throughout the domain,
the problem is characterized only by the excitation frequency and the convolution
integral simplifies to the known frequency domain boundary conditions (Atassi & Ali
2002; Atassi et al. 2004).

2.2. Linear formulation: scattering from a compact heat source

In this subsection, we derive the system of equations that arise in the compact heat
source limit. We consider a small-amplitude acoustic mode in an annular duct, incident
on a heat source whose axial extent is small relative to the acoustic wavelength.
Assuming a monochromatic excitation characterized by the frequency, ω, the solution
upstream of the heat source (region 1) consists of an incident and reflected acoustic
wave and the pressure field solution (2.5) becomes:

p1 =

n=∞∑
n=1

a+
mne

imθRmn(r)e
i(k+

mn1
x−ωt) + a−

mne
imθRmn(r)e

i(k−
mn1

x−ωt). (2.15)

The region 1 velocity field is related to the pressure field by the linearized momentum
equation. Downstream of the jump condition, the solution is a superposition of
acoustic, vortical and entropic modes,

p′
2 =

n=∞∑
n=1

m=∞∑
m=−∞

b+
mne

imθRmn(r)e
i(k+

mn2
x−ωt), (2.16)

u2 = ua
2 +

n=∞∑
n=1

m=∞∑
m=−∞

CmnRmn(r)e
i(mθ+ω/U2x−ωt), (2.17)

ρ ′
2 =

p′
2

c2
2

+

n=∞∑
n=1

m=∞∑
m=−∞

FmnRmn(r)e
i(mθ+ω/U2x−ωt). (2.18)

Note that ua
2 denotes the velocity field induced by the acoustic wave and the second

term in (2.17), ug = u2 − ua
2, is the convected, divergence-free velocity field induced

by the vortical waves. The second term in (2.18) represents the convected density
fluctuations induced by the entropy disturbances. The entropy perturbation, s ′, is
related to the pressure and density through the equation of state and is expressed as

s ′

cv

=
p′

P
− γρ ′

ρ
. (2.19)

The basis functions assumed for the vortical and entropic disturbances are the same
as the acoustic modes since the scattered entropic and vortical disturbances can be
expressed, using the Rankine–Hugoniot jump conditions, in terms of the acoustic
velocity and density field at the jump condition. Note that due to the change in the
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speed of sound and Mach number, the axial wavenumber, kmn changes across the
jump. However, the acoustic eigenfunction, Rmn , depends only on the hub-tip ratio
of the duct and the indices m and n. Since these do not vary in the upstream and
downstream domains, this function remains the same.

The axial coefficient, Cxmn
(r), is related to Ctmn

(r) and Crmn
(r) by the divergence-free

condition of the vortical velocity,

∇ · ug = 0. (2.20)

Recall the radial velocity goes to zero when r = rh and r = 1 to satisfy the
impermeability condition at the walls of the annular duct.

The Rankine–Hugoniot conditions can be derived from (2.1) in the limit where the
control volume goes to zero. The resulting jump conditions are used to match the
solutions upstream and downstream and determine the unknown coefficients of
the acoustic, vortical and entropic waves. The jump conditions are expressed as

[ṁ] = [ρv · nA] = 0, (2.21)

[pA + ṁv] = 0, (2.22)

[v × n] = 0, (2.23)

[ṁH ] = Q̃, (2.24)

where the brackets denote the change from region 1 to region 2, H is the total enthalpy
and Q̃ is the integrated heat addition resulting from a concentrated heat source that
can be decomposed into steady and unsteady terms Q̃= Q+q ′(t) where |(q ′(t))/Q| �
1. A heat source or nozzle area change produces jumps in the mean flow field which
are determined by substituting (2.4) into (2.21–2.24) and solving the leading-order
jump conditions. To next order, we obtain the linearized jump conditions,[

ṁ′

¯̇m

]
=

[(
ux

U
+

ρ ′

ρ

)]
= 0, (2.25)[

p′

ρU
+ 2ux + U

ρ ′

ρ

]
= 0, (2.26)

[uθ ] = [ur ] = 0, (2.27)[
H ′ +

ṁ′

¯̇m
H̄

]
=

[
γ

γ − 1

(
P

ρ

(
p′

P
− ρ ′

ρ

))
+ Uux

]
+

ṁ′

¯̇m

Q

¯̇m
=

q ′(t)
¯̇m

, (2.28)

where [H̄ ] = Q/ ¯̇m. Equations (2.25)–(2.28) represent the unsteady conservation
relations for mass, x -momentum, θ-momentum, r-momentum and energy,
respectively. Using (2.27), the vortical wave amplitudes are related to the upstream
and downstream acoustic wave amplitudes,

u
g
θ =

(
ua

θ1
− ua

θ2

)
|x=0 eiω/U2(x−U2t), (2.29)

ug
r =

(
ua

r1
− ua

r2

)
|x=0 eiω/U2(x−U2t), (2.30)

and the vortical waves convect downstream with the mean flow velocity, U2. This
relation also shows that the vortical waves depend on the incident, reflected and
transmitted acoustic waves.
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The entropy can also be expressed in terms of the acoustic and vortical waves. The
linearized entropy equation can be expressed as

D0s
′

Dt
= − Q

ρT

(
u′

U
+

p′

P
− q ′

Q

)
, (2.31)

where D0/Dt ≡ ∂/∂t + U (∂/∂x). Assuming time-harmonic disturbances
{s ′, u′, p′, q ′} = {ŝ, û, p̂, q̂}e−iωt (2.31) can be expressed as

∂

∂x
(ŝe−iω/Ux) = −Qe−iω/Ux

ρT U

(
û

U
+

p̂

P
− q̂

Q

)
. (2.32)

Assuming the heat source is a localized heat source at the origin of the domain,
Q = q̄δ(x), (2.32) can be integrated and the unsteady entropy due to mean heat
source is

s ′(x, t) =
−1

ρ2T 2U2

[
q̄

(
û2

U2

+
p̂2

P2

)
− q̂

]
x=0

eiω(x/U2−t). (2.33)

This expression shows that the unsteady entropy is produced by both the mean heat
source (through the pressure and velocity disturbances) and the unsteady heat source.
Also, depending on the phase of the unsteady heat release the production of entropy
can be either reinforced or suppressed.

The unsteady Rankine–Hugoniot conditions are then used to match the assumed
form of the unsteady solutions at the interface between the upstream domain
and the downstream domain. Substituting the unsteady solutions into (2.25)
through (2.28) and using (2.29) and (2.30) yields a linear system of equations
Ax = b where the number of equations depends upon the number of Fourier–
Bessel modes used to achieve an accurate match between the upstream and
downstream solutions. The vector b contains the known incident wave which is
fully specified by the circumferential mode order, m, the radial mode order, n,
the hub-tip ratio and the reduced frequency, ω. In this work, the calculations are
facilitated by MATLAB’s GMRES routine which employs the generalized minimum
residual method, from Saad & Martin (1986), to solve for each unknown modal
coefficient.

In what follows, we analyse two problems using the compact source limit: (i) the
scattering of acoustic waves in a constant area annular duct with heat addition and (ii)
a converging nozzle without heat addition. Note that for the nozzle problem, the flow
is isentropic and only four jump conditions are needed since the axial momentum and
energy conditions reduce to the same condition. Nonlinear results are then computed
that assess the ranges of validity of the compact source approximation by examining
the impact of the heat source width and the incident wave amplitude on the scattered
solution.

3. Results and discussion
3.1. Plane wave scattering across a localized heat source

In this section, we use the compact source formulation from § (2.2) to compute plane
wave scattering due to a localized heat source. The heat source creates a jump in
the mean flow which causes the incident acoustic wave to scatter into downstream
travelling acoustic and entropic waves and an upstream travelling acoustic wave. The
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(Heat addition: downstream
(Upstream conditions) conditions) Nozzle: downstream conditions

M1 = 0.300 M2/M1 = 1.806 M2/M1 = 1.806
P1 = 0.714 P2/P1 = 0.798 P2/P1 = 0.872
ρ1 = 1.000 ρ2/ρ1 = 0.384 ρ2ρ1 = 0.907
c1 = 1.000 c2/c1 = 1.441 T2/T1 = 2.077 c2/c1 = 0.981 T2/T1 = 0.962
A1 = 1.000 A2/A1 = 1.000 A2/A1 = 0.623

Table 1. Mean flow jump conditions for the cases with heat addition and area change.

results are compared with the transmission and reflection of acoustic waves in a
compact nozzle.

When non-dimensionalized by the local steady pressure field, γP , the compact
nozzle reflection and transmission coefficients can be determined solely from the
Mach number upstream and downstream of the nozzle throat (Marble & Candel
1977). Motivated by this result, we compare the solutions for the adiabatic nozzle and
the heated duct as a function of downstream Mach number with identical upstream
flow conditions. Table 1 shows the mean flow jump for the compact nozzle and the
heated duct where the area variation and heat addition have been chosen to yield the
same Mach number ratio. Although the upstream mean flow and the downstream
Mach number are the same, the mean flow pressure and density jumps are different.
For example, the speed of sound decreases in the nozzle, c̄2/c̄1 = 0.981, and a large
increase in the speed of sound and decrease in the density occur because of the heat
addition, c̄2/c̄1 = 1.441 and ρ̄2/ρ̄1 = 0.384.

Figure 2 shows the non-dimensional reflection, transmission and entropy coefficients
for the heated flow and nozzle subject to the same inlet conditions but different
downstream Mach numbers. In the case of the nozzle, the downstream Mach number
variation is achieved by varying the area ratio of the nozzle. In the case of the heated
duct, the Mach number variation is achieved by varying a steady state heat source.
Note the steady heat source limit, q ′ = 0, represents a canonical case where the reaction
time is much longer than the acoustic forcing period (Dowling 1995). Figure 2(a)
shows the transmitted wave coefficient versus downstream Mach number, M2. In the
heated duct, the transmission coefficient decreases faster than γP2 with increasing
Mach number, M2, while the transmission coefficient for the nozzle increases slightly.
Figure 2(b) shows a comparison of the reflected wave amplitude versus downstream
Mach number for both cases. As the mean flow jump increases, larger reflections
result in both cases. The nozzle exhibits larger reflections than the heated duct for the
same Mach number ratio. However, the heated duct produces entropy waves because
of the heat addition which convect downstream. The entropy wave amplitude, shown
in figure 2(c), increases significantly with the increasing downstream Mach number
jumps for the heated duct. Thus, it is evident that some of the acoustic energy of the
incident acoustic wave is scattered into entropic disturbances.

To better understand the transfer of energy in the nozzle and heated duct problems,
we examine the acoustic power. The acoustic power associated with the incident
acoustic wave, Ein, and the acoustic power leaving the computational domain, Eout,
are defined as,

Ein =

∫
∂Ω

[Iinc] · n̂ dA (3.1)
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Figure 2. Scattered wave magnitudes for heated duct versus nozzle with incident plane wave
(m= 0). Upstream Mach number =U1/c1 = 0.3. (a) Transmitted acoustic wave magnitude,
|T | = |b+/a+|/(γP2), (b) reflected acoustic wave magnitude, |R| = |a−|/|a+| and (c) entropy

wave magnitude, |ŝ| = |s ′ |/cv , versus downstream Mach number, U2/c2.
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Figure 3. Sound power for heated duct versus nozzle with incident plane wave (m= 0).
Upstream Mach number = U1/c1 = 0.3. (a) Transmitted and reflected acoustic wave sound
power versus downstream Mach number, U2/c2 and (b) sum of transmitted and reflected
acoustic wave sound power.

and

Eout =

∫
∂Ω

[Ire + Itr ] · n̂ dA, (3.2)

where I is given by,

I =

(
p′

ρ
+ u · U

)
(ρu + ρ ′U). (3.3)

The acoustic power of the incident, reflected and the transmitted waves for the
respective duct with heat addition and isentropic nozzle is shown in figure 3. In
each case, the power has been normalized by that of the incident acoustic wave.
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Figure 3(a) shows that the reflected and transmitted acoustic energy of the heated
duct is significantly lower than the nozzle case suggesting that a significant portion
of the incident acoustic energy has scattered into entropic disturbances. Figure 3(b)
shows the outgoing acoustic energy, Ere + Etr . In the nozzle problem Ein = Eout, while
for the heated duct Ein > Eout. For the heated duct, the outgoing acoustic energy
decreases rapidly with downstream Mach number, until about M2 = 0.5 where the
rate of reduction in energy is less steep. This is also the Mach number where the rate
of increase in the entropic amplitude starts to decrease.

Equation (2.33) shows that unsteady heat release may act to increase or suppress the
entropy waves convecting downstream. To further understand the role of the scattered
entropy waves on the scattered acoustic waves, we consider a second canonical case of
unsteady heat addition where the rate of heat input is proportional to fluctuations in
the mass flow rate, q ′/q̄ = ṁ′/ ¯̇m (Dowling 1995). In this case, the production of entropy
is suppressed by the heat addition. Figure 4 shows the scattered wave coefficients for
the two canonical heat duct cases and the adiabatic nozzle. Figure 4(c) shows that
very little entropy is produced when the unsteady heat source is proportional to
fluctuations in the mass flow rate, and as a result, the reflected and transmitted
acoustic wave coefficients, shown in figure (4a,b), increase relative to the q ′ =0 limit.
Moreover, this unsteady heat addition case shows scattered solutions which are very
similar to the nozzle. The trends for the steady and unsteady heat addition cases
suggest that it is the production of entropy which differentiates the acoustic scattering
in the heated duct from the adiabatic nozzle problem.

3.2. Circumferential mode scattering by a localized mean heat source

The plane wave scattering, analysed in the previous section, depends on the mean flow
jump and is independent of the frequency of the incident wave. In this section, we
investigate the scattering of an incident circumferential acoustic mode into acoustic,
entropic and vortical disturbances. In particular, we study the effect of the mean flow
jump, the frequency of the excitation and the circumferential mode number, m, on
the scattering of the incident wave.

3.2.1. Effect of heat addition and reduced frequency on circumferential mode scattering

Figure 5 shows the acoustic, vortical and entropic wave amplitudes with m =1 over
a range of downstream Mach numbers. Each Mach number corresponds to different
quantities of heat addition and the same imposed upstream conditions which are
provided in table 1. The reduced frequency at the inlet is ω = 4π/3. As the Mach
number jump increases, the amplitudes of the entropy wave and the reflected acoustic
wave increase while the transmitted acoustic wave decreases. Vorticity waves are also
produced but their amplitudes are relatively low compared to the entropy waves.
Note that the trends for the acoustic and entropic wave amplitudes with an incident
circumferential mode are similar to that of the plane wave.

Figure 6 shows the scattered field amplitudes versus incident wave frequency.
In this case, the upstream and downstream Mach numbers are fixed: M1 = 0.3 and
M2 = 0.61. As a reference, the cutoff ratio, ω/(λmnβ), is plotted alongside the coefficient
magnitudes. For propagating modes which approach cutoff, there is a large rise
in the transmitted and reflected acoustic waves. The vortical waves also increase
but the entropy wave amplitude significantly decreases. As the frequency increases
and the cutoff ratio approaches 2.0, the vortical and acoustic wave amplitudes decrease
and the entropy wave amplitude increases. Beyond a cutoff ratio of 2.0 the results
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Figure 7. Magnitude of scattered amplitudes versus frequency of incident circumferential
wave. Steady and unsteady heat addition in comparison to incident plane wave. Upstream
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θ | = |Ct |/|a+| and (d ) entropy wave magnitude, |ŝ| = |s ′ |/cv .

appear to asymptote towards the plane wave results. There is also clear delineation
in amplitudes for the calculations where the incident acoustic wave is cutoff.

This behaviour is not unexpected from the inspection of (2.29), (2.30) and (2.33).
Equation (2.33) shows that the entropy depends on the downstream perturbation
pressure and velocity, both of which decrease rapidly at cutoff. The vortical wave
behaviour, however, is quite different. Equation (2.29) shows that the vortical waves
depend upon the circumferential velocity component induced by the acoustic waves.
Furthermore, since the basis functions of both the upstream and downstream acoustic
waves follow that of the upstream incident wave, we may use (2.11) to understand
that near cutoff, the circumferential acoustic velocity is large compared to the axial
velocity. Specifically, the ratio of circumferential acoustic velocity to axial acoustic
velocity is governed by m/kmn , which increases with decreasing cutoff ratio. Thus,
near cutoff, the scattered vortical wave coefficients are expected to increase relative
to the scattered entropic wave which depends on the axial velocity component.

To understand the role of unsteady heat release on the circumferential acoustic
modes, we consider the effect of unsteady heat addition where q ′/q̄ = ṁ′/ ¯̇m. Figure 7
shows the scattered wave solutions with and without unsteady heat release. Note that
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M2 = 0.39 CR1 = 1.215 m/k+
11 = 2.16 ω1 = 2.1 m = 1

CR1 = 1.215 m/k+
11 = 2.19 ω1 = 4.1 m = 2

CR1 = 1.215 m/k+
11 = 2.22 ω1 = 6.1 m = 3

M2 = 0.39 CR1 = 2.321 m/k+
11 = 0.503 ω1 = 4.0 m = 1

CR1 = 2.346 m/k+
11 = 0.502 ω1 = 8.0 m = 2

CR1 = 2.331 m/k+
11 = 0.514 ω1 = 11.7 m = 3

Table 2. Acoustic parameters used in the constant cutoff ratio study with a mean heat source
resulting in M2/M1 = 0.39/0.3. The first column contains the downstream Mach number.
The second through fourth columns show the cutoff ratio, circumferential mode to axial
wavenumber ratio, reduced frequency and circumferential mode number utilized to maintain
the cutoff ratios constant for the incident acoustic mode.

the choice of unsteady heat release acts to suppress the production of entropy and
more energy is scattered into the acoustic solutions. However, at cutoff ratios close to
unity, the amplitude of the scattered vortical waves is larger providing another means
to transfer energy from the outgoing acoustic waves.

3.2.2. Circumferential mode scattering sensitivity to cutoff ratio

The results in § 3.2.1 suggest that the cutoff ratio is an important parameter in
determining the scattering of the incident waves across the interface. Inspection of
(2.11) shows that the velocity field produced by the incident pressure wave depends
on the Mach number, the cutoff ratio and m/kmn . Moreover, (2.29) shows that
the circumferential vortical velocity depends on the acoustic velocity jump. In this
section, we examine whether the scattered amplitudes, at a given Mach number, can
be expressed solely in terms of the cutoff ratio parameter, ω/(λmnβ), instead of both
the frequency and circumferential mode number, m.

We consider three different heat sources producing different downstream Mach
numbers for the same upstream conditions given in table 1. We then impose incident
wave excitations with different frequencies and circumferential mode order but the
same cutoff ratio. Constant cutoff ratios are obtained by selecting a circumferential
mode order, m, and varying the frequency until the desired cutoff ratio is obtained.
A summary of the parameters used to achieve a nearly constant cutoff ratio for one
of the heat sources is presented in table 2. The first three columns of table 2 show
the parameters that determine the induced axial and circumferential acoustic velocity
components. The last two columns show the frequencies and spinning mode orders
utilized to achieve a nearly constant cutoff ratio for the incident acoustic mode. Note
that, in the cases considered, the parameter, m/kmn , which affects the circumferential
velocity is also nearly constant.

Figures 8(a) and 8(b) show the transmitted and reflected acoustic wave coefficients
versus Mach number, M2, for various incident waves with the same cutoff ratios.
For the first radial mode, cutoff ratios of 1.0–2.0 were targeted for the waves
in the downstream domain. The scattered acoustic waves produced upstream and
downstream of the heat source are nearly identical when the cutoff ratio is the
same. Additionally, figures 9 and 10 show the θ-vortical, x -vortical and entropy wave
magnitudes. The θ-vortical, x -vortical and entropy wave magnitudes also collapse
with the cutoff ratio. Since the cutoff ratio is a function of radial mode order, it is
only possible to hold the cutoff ratio for one radial mode at a time. The present
results showing nearly identical results at the same cutoff ratio imply that little of
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Figure 8. Cutoff ratio collapse. Magnitude of scattered acoustic waves for different incident
circumferential mode orders. Upstream Mach number =U1/c1 = 0.3. (a) Transmitted acoustic
wave magnitude, |T | = |b+|/|a+|, (b) reflected acoustic wave magnitude, |R| = |a−|/|a+|, versus
downstream Mach number, U2/c2.

the incident acoustic wave scatters into higher-order radial modes. This is indeed the
situation, since the flow field and geometry considered exhibit no radial variation
across the annulus.

3.3. Euler results: effect of finite source thickness on acoustic scattering

In the previous sections, the scattering from a jump condition produced by a discrete
heat source jump condition was considered. The equations for the compact source
limit, where the heat source is represented by jump conditions, are normal both
upstream and downstream of the jump. In this case, the coupling between the
acoustic, vortical and entropic waves occurs only through the jump conditions and the
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eigenfunction solutions upstream and downstream of the jump are orthogonal. When
the heat source has finite thickness, the mean flow is non-uniform and the linearized
operator of the system of equations is locally non-normal. Coupling between the
acoustic, vortical and entropic modes may occur (Chagelishvili et al. 1997; Golubev
& Atassi 1998; Atassi 2003; Atassi 2007; George & Sujith 2009), but it is confined
to the local region of non-uniform flow.

In this section, the effect of the width of the heat source is studied by solving
the Euler equations subject to an incident acoustic wave where the amplitude
of the heat source is adjusted, depending on the width of the heat source, to
maintain constant flow conditions upstream and downstream of the heat source.
We assume a Gaussian heat source characterized by the amplitude, A, and width,
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σ , where Q(x) = A exp(−x2/σ 2). To isolate the effect of the heat source width on
the scattered solution, the amplitude of the incident acoustic wave is small, ai =
0.001.

3.3.1. Scattering by a finite thickness heat source

An incident acoustic wave with a mean flow characterized by heat sources of
different widths and amplitudes is considered. Three heat sources adding different
levels of heat are studied. For each of the three cases, four different heat source widths
producing the same net heat addition are analysed. Figure 11 shows the Gaussian
heat source distributions of different widths for the case with moderate heat energy
which is characterized by the Mach number rise, M2 = 0.70. Note that as the width
of the heat source increases, the peak amplitude decreases to sustain the same net
heat addition. The imposed upstream Mach number in each case is M1 = 0.48. The
downstream Mach numbers for the three cases considered are: M2 = 0.56, 0.70 and
0.89.

Figure 12 shows the reflected and transmitted acoustic waves for all three
downstream Mach numbers, M2. For each of the cases, several different heat source
widths, σ = 0.05, 0.1, 0.2, 0.4, are considered. As the width increases, the results start
to deviate from the compact source limit. In each case, the trend shows the transmitted
wave amplitudes increasing and the reflected wave amplitude decreasing as the axial
extent of the heat source broadens. The variation in scattered wave amplitude is
more visible in the shorter wavelength reflected waves than the downstream-going
scattered wave. The scattered wave sensitivity to the width of the heat source is most
visible in the upstream-going scattered wave associated with the largest heat addition
case corresponding to a downstream Mach number, M2 = 0.89. Here the upstream
scattered acoustic wave amplitudes are noticeably smaller than the compact source
limit.
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Figure 13 shows an overlay of the various solutions for the case with a downstream
Mach number equal to 0.70. Figure 13(a–c) shows the axial pressure, entropy and
velocity distributions for four different heat source widths ranging from zero thickness,
the compact source limit, to the width resulting from σ = 0.4. The pressure, entropy,
and x -velocity solutions are plotted as a function of axial coordinate. The Euler
solutions show a smooth transition across the heat source while the compact source



22 O. V. Atassi and J. J. Gilson

(a)

(b)

(c)

−1.0 −0.5 0 0.5 1.0

−1.0 −0.5 0 0.5 1.0

−4

−3

−2

−1

0

1

2

3

4
(× 10−3)

(× 10−3)

(× 10−3)

Unsteady pressure

p′

A = 2.65; σ = 0.1

A = 1.33; σ = 0.2

A = 0.66; σ = 0.4

Compact source

−4

−3

−2

−1

0

1

2

3

4
Unsteady entropy

s′
/c
v

−1.0 −0.5 0 0.5 1.0
−4

−3

−2

−1

0

1

2

3

4
Unsteady x-velocity

x

ux

A = 2.65; σ = 0.1

A = 1.33; σ = 0.2

A = 0.66; σ = 0.4

Compact source

A = 2.65; σ = 0.1

A = 1.33; σ = 0.2

A = 0.66; σ = 0.4

Compact source

Figure 13. Mid-Q case, M2 = 0.70. Effect of heat source width on unsteady parameters
(a) Pressure, (b) entropy (c) x -velocity. Incident plane wave.



Acoustic mode scattering from a heat source 23

Full solution versus compact source amplitudes

1.5 2.0 2.5 3.0 3.5 4.0 4.5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

ω

|T
|, 

|R
|

|T| Compact source
|T|; σ = 0.05
|T|; σ = 0.10
|T|; σ = 0.20
|T|; σ = 0.40

|R| Compact source
|R|; σ = 0.05
|R|; σ = 0.10
|R|; σ = 0.20
|R|; σ = 0.40

Figure 14. Incident m= 1 wave: acoustic amplitudes versus frequency for heat source
distribution with jump M1 = 0.3, M2 = 0.70 and different frequencies: ω = 1.87, 2π/3, 8π/9
and 4π/3.

exhibits a jump in the pressure and entropy solutions. Despite the local variation, the
solutions upstream and downstream match the compact limit solution quite well. The
largest variations between the solutions are visible in the entropy which decreases
in amplitude as the width of the heat source increases. As the amplitude of the
entropy wave decreases, the amplitude of the downstream-going scattered acoustic
wave increases slightly. This general trend of decreasing entropy with increasing
width is observed in the three mean flow jumps considered. Figure 13 also shows
that the full solution approaches the compact source in the limit of narrower heat
source distributions and suggests the class of problems for which the compact source
approximation may be used.

The scattering of a circumferential wave, m = 1, is also presented for several heat
source thicknesses. A single mean flow jump is considered, M2 = 0.70, with four
different frequencies: ω = 4π/3, 8π/9, 2π/3 and 1.87. Figure 14 shows the transmitted
and reflected acoustic amplitudes versus incident wave frequency, ω. Like the plane
wave, the narrowest heat source width approaches the solution of the compact source
model for all of the frequencies. The sensitivity of the solutions to the width of the
heat source is more visible for the higher frequencies where the wavelength of the
upstream and downstream acoustic waves is of similar order to the thickness of
the heat source.

3.4. Nonlinear scattering: effect of incident wave amplitude on outgoing acoustic waves

In this section, we solve the Euler equations and vary the amplitude of the incident
wave to examine how nonlinear effects modify the solution. Figure 15 shows line plots
of the pressure for two incident waves with amplitudes, ai = 0.01, 0.05. To aid the
comparison between the small and moderate amplitude solutions, the small amplitude
solution with ai = 0.01 has been scaled by a factor of five. Comparison of the line
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Figure 15. Effect of incident wave amplitudes, 0.01 and 0.05. (a) unsteady pressure solution,
(b) Fourier coefficient of transmitted wave, (c) Fourier coefficient of reflected wave.

plots near the location of the heat source shows a steepening in the pressure wave
fronts.

To examine the effect of the amplitude on the time evolution, figure 15(b,c) shows
the time history of the last three periods of the converged scattered wave solutions
at the inlet and the exit of the domain. The small amplitude solution has been
scaled by a factor of five for plotting purposes and shows a sinusoidal behaviour in
time which is characterized by the dominant excitation frequency, ω. The scattered
acoustic waves at the inlet and exit for the larger amplitude disturbance are slightly
higher in amplitude. Moreover, they exhibit a different oscillatory behaviour because
of the production of higher harmonic frequencies which alter both the amplitude and
sinusoidal character of the oscillations.

4. Conclusions
The range of validity of the compact source limit and the effect of circumferential

mode excitations on the scattering of acoustic waves into vortical, entropic and
reflected and transmitted acoustic waves are studied. The scattering of circumferential
waves is characterized by the mean flow Mach number, reduced frequency and
circumferential mode order of the imposed incident wave. For the cases considered in
this paper where little scattering into radial modes occurs, it is found that the solutions
can be characterized by a single parameter: the cutoff ratio, ω/(βλmn ). Incident waves
with large cutoff ratios approach the results for plane wave excitations. However, for
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cutoff ratios closer to unity, significant deviations from the plane wave results occur.
When the axial extent of the heat source is on the order of the acoustic wavelength,
the scattered solution is also modified. In this case, the entropy wave amplitude is
diminished and the downstream scattered acoustic wave amplitude is enhanced.

Understanding the basic interactions of acoustic waves in heated flows is an
important first step in understanding how energy is transferred in these applications.
Moreover, mean flow quantities and their gradients are much easier to measure
than unsteady fluctuations in heat release. Thus, the effectiveness and limitations of
models describing the interaction of acoustic waves in heated flows may be easier to
realize than complex simulations trying to capture all of the physics and unsteady
interactions occurring in combusting flows.
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